If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x+x^2-374=0
a = 1; b = 6; c = -374;
Δ = b2-4ac
Δ = 62-4·1·(-374)
Δ = 1532
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1532}=\sqrt{4*383}=\sqrt{4}*\sqrt{383}=2\sqrt{383}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{383}}{2*1}=\frac{-6-2\sqrt{383}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{383}}{2*1}=\frac{-6+2\sqrt{383}}{2} $
| 4x+7=3(2x−5) | | 3(r+-1)=18 | | A=3.14x2^2 | | 16^x+1=64^x | | ƒ(x)=8(x-4)-18 | | 7b-3=52 | | -7(2x-3=7 | | 4.6=1.8-0.5y | | 58+22=x | | A+B+(1/2x+10)=180 | | (w+3)^2=2w^2+17w+37 | | 6(4x-5)=15-20x | | 2/7x=1.8 | | X+X+(1/2x+10)=180 | | 1/2x+10=0 | | x-3/4-1=x-11/5 | | -2z-9z=4z+7+5z | | 2(4+z)=8+3z | | 4+k=6k | | −5−5k−15=20 | | -8(x+5)=4(x-17) | | -z+8z=-4z-9+5z | | 7b-3=5 | | n-5/6=7 | | 24x+4=20x-24 | | x^2+82x+40=0 | | 15x-5=10x+45 | | 2x/3=x/2 | | F(x)=-3x+4x-3 | | F(9)=2x+6 | | m+3=6.2 | | 3(k+2)=24 |